FMI is an Italian manufacturing company specialised in the processing of PTFE, graphite and all the main asbestos-free materials used for the production of gasketing materials, gaskets and semi finished products of high technical value. The company's current structure has resulted from progressive developments over the years which have led to the engineering of unique processing and manufacturing methods. FMI manufactures leading-edge products and innovative solutions which are protected by international patents. FMI's underlying goal is to provide the best quality, as certified by all major independent examination institutes. Our products are our best guarantee suitable for all types of customers and applications, both standard and critical. For a detailed list of approvals, please visit the dedicated area on our website www.fmi-spa.com/approvals SICHEM® range of products is a high performance biaxially oriented sheet sealing material containing modified PTFE or microcellular modified PTFE, with many different fillers to suite all the sealing across the working Ph. | SICHEM® | S11 | S33 | S50 | S59 | Diaphragm | | | |--|--|--|---|--|--|--|--| | Colour | | | | O | 0 | | | | Composition | Modified PTFE
with
Silica filler | Modified PTFE
with
Barium
sulphate filler | Modified PTFE
with
Hollow Glass
microspheres
filler | Modified PTFE
with
Mica filler | Pure modified
PTFE | | | | Density
ASTM F 1315 (g/cm³) | 2,2 | 2,8 | 1.4 | 2.1 | 2.18 | | | | Temperature operating range (°C) | -260/+260 | -260/+260 | -260/+260 | -260/+260 | -260/+260 | | | | Max operating pressure (bar) | 80 | 80 | 50 | 80 | Please contact
FMI technical
service | | | | P x T Max.(Thk 0.8 - 2.0 mm)
(bar x °C) | 12000 | 12000 | 12000 | 12000 | - | | | | P x T Max. (Thk 3.0 mm)
(bar x °C) | 8500 | 8500 | 8500 | 8500 | - | | | | Leakage
DIN 3535-6 (mg*s-1*m-1) | <0.05 | <0.005 | <0.05 | <0.005 | <0.005 | | | | Creep relaxation
DIN 3535-6 (%) | <24 | <28 | <19 | <42 | <55 | | | | Compressibility
DIN 3535-6 (%) | >4 | >4.3 | >32 | >4.8 | >11 | | | | Recovery
DIN 3535-6 (%) | >1.7 | >2.1 | >7 | >3.2 | >5 | | | | pH range | 0-14 | 0-14 | 0-14 | 0-14 | 0-14 | | | | Availability
Sheets size (mm)
Thickness (mm) | 1.500×1.500
1.750×1.750
0.75/1.0/2,0/2,5/3,0/4,0/5,0/6,0 | 1.500x1.500
1.750x1.750
0.75/1,0/2,0/2,5/3,0/4,0/5,0/6,0 | 1.500×1.500
1.750×1.750
0.75/1,0/2,0/2,5/3,0/4,0/5,0/6,0 | 1.500×1.500
1.750×1.750
0,75/1,0/2,0/2,5/3,0/4,0/5,0/6,0 | 1.000X1.000
1.500X1.500
0.75/1,0/2,0/2,5/3,0/4,0/5,0/6,0 | | | | Tollerances
Sheets size (mm)
Thickness (%) | +/- 50
+/- 10 | | | | | | | | | | | | | S90 | S91 | S60 | S58 | S66 | S92 | S93 | |---|---|---|---|---|---|---| | | | | | | 0 | | | Microcellular
Modified PTFE
with
Silica filler | Microcellular
Modified PTFE
with
Barium
sulphate filler | Microcellular
Modified PTFE
with
Inorganic fillers | Microcellular
Modified PTFE
layers with
Pure modified
PTFE core | Microcellular
Modified PTFE
with
SS316L tanged
core | Microcellular
Modified PTFE
with
graphite | Microcellular
Modified PTFE
with
mica | | 1,35 | 2.0 | 0.85 | 1.3 | 1.2 | 1.45 | 1.2 | | -260/+260 | -260/+260 | -260/+260 | -260/+260 | -260/+260 | -260/+260 | -260/+260 | | 70 | 70 | 80 | 80 | 170 | 50 | 50 | | 12000 | 12000 | 12000 | 12000 | 25000 | 12000 | 12000 | | 8500 | 8500 | 8500 | 8500 | 15000 | 8500 | 8500 | | <0.03 | <0,005 | <0,002 | <0,002 | <0.01 | <0,005 | <0,001 | | <14 | <18 | <12 | <26 | <5 | <27 | <16 | | >40 | >35 | >55 | >44 | >41 | >42 | >50 | | >6 | >6 | >5 | >6.3 | >6 | >12 | >5 | | 0-14 | 0-14 | 0-14 | 0-14 | 0-14 | 0-14 | 0-14 | | 1,500x1,500
1,750x1,750
1,0/1,5/2,0/2,5/3,0/4,0/5,0/6,0 | 1,500×1,500
1,750×1,750
1,5/2,0/2,5/8,0/4,0/6,0/6,0 | 1,500×1,500
1,750×1,750
1,0/1,5/2,0/2,5/3,0/4,0/5,0/6,0 | 1,500x1,500
1,750x1,750
1,5/2,0/2,5/3,0/4,0/5,0/8,0 | 1,500x1,500
1,0/1,5/2,0/2,5/3,0/4,0/5,0/6,0 | 1,500×1,500
1,750×1,750
1,5/2,0/2,5/3,0/4,0/5,0/6,0 | 1.500x1.500
1.750x1.750
1.5/2,0/3,0/4,0/5,0/6,0 | | +/- 50
+/- 10 Using a patented process, we produce materials that have special controlled microporosity and a close-cell structure. Products from the SICHEM® family achieve high compression and sealability at low bolt torque values. They are optimized for applications with irregular sealing surfaces, compromised load capacity, or replacement of envelope gaskets. biaxially oriented structure microcellular structure multilayers versions ## Chemical compatibility guide for Sichem® | | 0 | | 31 | 9 | 33 | | | | 0 | | 31 | 9 | 33 | | | | 0 | | 31 | 0,0 | S93 | | | |--|---------|---------|---------|---------|---------|-----------|---------|---|---------|---------|---------|---------|---------|-----------|---------|--|----------|---------|---------|---------|----------|-----------|---------| | | - 890 | | - S91 | - S60 | - S93 | | | | - S90 | | - S91 | - S60 | - S93 | | | | - S90 | | - S91 | - S60 | - 1 | | | | | S11- | S50 | S33 | S58 | S59 | Σ | S66 | | S11- | S50 | S33 | | S59 | Σ | 998 | | S11- | S50 | S33 | S58 | S59 | Σ | S66 | | | SICHEM® | SICHEM® | SICHEM® | SICHEM® | SICHEM® | DIAPHRAGM | SICHEM® | | SICHEM® | SICHEM® | SICHEM® | M® | SICHEM® | DIAPHRAGM | SICHEM® | | SICHEM® | SICHEM® | SICHEM® | SICHEM® | SICHEM® | DIAPHRAGM | SICHEM® | | | 뽔 | 못 | 뽓 | 뽓 | 뽕 | ۸PH | 뽔 | | 뿕 | 뿕 | 뽔 | SICHEM® | 뽔 | √PH | 뽔 | | 뽓 | 뽓 | 뽓 | 뿕 | 뽓 | 4PH | 뿣 | | | | | | _ | _ | | | | S | S | S | S | 8 | ≧ | S | | <u>S</u> | S | S | 8 | <u>S</u> | ≧ | S | | Acetaldehyde
Acetamide | • | • | • | : | • | • | | Calcium Chloride
Calcium Cyanamide | : | • | • | | | | | E85 (85% Ethanol, 15% Gas)
Epoxybutane | • | : | • | : | • | : | • | | Acetic Acid | • | • | • | | • | • | | Calcium Hydroxide | • | • | • | • | • | • | • | Ethane | • | • | • | • | • | • | • | | Acetic Anhydride
Acetone | • | • | • | • | | • | • | Calcium Hypochlorite Calcium Nitrate | | | • | | | : | | Ethers
Ethyl Acetate | • | • | • | : | : | : | • | | Acetonitrile
Acetophenone | | • | | • | | | | Cane Sugar Liquors
Caprolactam | | | | | | : | | Ethyl Acrylate
Ethyl Alcohol | • | • | • | • | • | : | | | Acetylaminofluorene | • | • | • | • | • | • | • | Captan | • | • | • | • | • | • | • | Ethylbenzene | • | • | • | • | • | • | • | | Acetylene
Acrolein | • | • | • | • | • | • | | Carbaryl
Carbolic Acid, Phenol | | | | | | | | Ethyl Carbamate
Ethyl Cellulose | • | : | • | | | : | • | | Acrylamide
Acrylic Acid | | • | • | • | | • | | Carbon Dioxide, Dry | : | • | • | | : | : | | Ethyl Chloride | • | : | : | • | : | : | • | | Acrylic Anhydride | • | • | • | • | • | • | • | Carbon Dioxide, Wet
Carbon Disulfide | : | • | • | • | • | | | Ethyl Ether
Ethyl Hexoate | • | | • | | | | | | Acrylonitrile
Adipic Acid | • | • | • | • | • | | | Carbon Monoxide Carbon Tetrachloride | | | | | | | | Ethylene
Ethylene Bromide | • | : | • | | | : | • | | Adiponitrile
Air | • | • | • | : | • | • | | Carbonic Acid | • | • | • | • | • | • | • | Ethylene Dibromide | • | • | • | • | • | • | : | | Allyl Acetate | • | • | • | • | • | • | • | Carbonyl Sulfide
Castor Oil | • | • | • | • | • | • | • | Ethylene Dichloride
Ethylene Glycol | • | • | • | • | • | : | | | Allyl Chloride
Allyl Methacrylate | • | • | • | • | • | • | | Catechol
Caustic Soda | | • | | • | | • | | Ethyleneimine
Ethylene Oxide | • | • | • | • | • | • | • | | Aluminum Chloride | • | • | • | : | • | : | | Cetane (Hexadecane) | • | • | • | • | • | • | • | Ethylene Thiourea | • | • | • | • | • | • | • | | Aluminum Fluoride
Aluminum Hydroxide (Solid) | • | • | • | • | • | • | • | China Wood Oil
Chloramben | | • | • | | • | • | • | Ethylidine Chloride
Ferric Chloride | • | : | • | • | • | : | • | | Aluminium, Molten
Aluminum Nitrate | • | • | • | • | • | • | • | Chlorazotic Acid (Aqua Regia)
Chlordane | : | : | | | : | : | | Ferric Phosphate Ferric Sulfate | • | • | • | • | • | • | | | Aluminum Sulfate | • | • | • | • | • | • | • | Chlorinated Solvents, Dry | • | • | • | • | • | • | • | Fluorine, Gas | • | ۰ | • | ۰ | • | ۰ | • | | Alums
Aminodiphenyl | • | • | • | : | • | • | | Chlorinated Solvents, Wet
Chlorine, Dry | : | • | • | | • | : | | Fluorine, Liquid
Fluorine Dioxide | • | • | • | • | • | • | • | | Ammonia, Gas, 70°C and below
Ammonia, Gas, Above 70°C | • | • | : | : | • | : | | Chlorine, Wet | • | • | • | • | • | | • | Formaldehyde | | • | • | • | • | • | • | | Ammonia, Liquid, Anhydrous | • | • | • | • | • | • | • | Chlorine Dioxide
Chlorine Trifluoride | • | | • | • | • | | • | Formic Acid
Fuel Oil | | : | • | • | • | : | | | Ammonium Chloride
Ammonium Hydroxide | | • | | | | | | Chloroacetic Acid
Chloroacetophenone | : | • | | | • | | | Fuel Oil, Acid
Gasoline, Refined | • | : | • | : | : | : | : | | Ammonium Nitrate | • | • | • | • | • | • | • | Chlorobenzene | • | • | • | • | • | • | • | Gelatin | • | • | • | • | • | • | • | | Ammonium Phosphate, Monobasic
Ammonium Phosphate, Dibasic | • | • | • | : | • | : | • | Chlorobenzilate
Chloroethane | | | | | | | • | Glucose
Glycerine, Glycerol | • | : | : | | | : | | | Ammonium Phosphate, Tribasic
Ammonium Sulfate | : | • | • | : | • | : | | Chloroethylene | : | • | | • | • | : | | Glycol | • | • | • | : | : | • | : | | Amyl Acetate | • | • | • | • | • | • | • | Chloroform Chloromethyl Methyl Ether (CMME) | | | | | • | | • | Grain Alcohol
Grease, Petroleum Base | • | : | • | | | : | | | Amyl Alcohol
Aniline, Aniline Oil | | • | | : | | | | Chloronitrous Acid (Aqua Regia) Chloroprene | | | | | | : | | Green Sulfate Liquor
Heptachlor | • | • | • | | | : | • | | Aniline Hydrochloride | • | • | • | • | • | • | • | Chlorosulfonic Acid | • | • | • | • | • | • | • | Heptane | • | • | • | • | • | • | • | | Aniline Dyes
Anisidine | | • | | | | | • | Chromic Acid
Chromic Anhydride | | | • | | | : | | Hexachlorobenzene
Hexachlorobutadiene | • | • | • | : | : | : | | | Antinomy trichloride
Aqua Regia | | • | | | | | | Chromium Trioxide
Citric Acid | | | | | | | | Hexachlorocyclopentadiene
Hexachloroethane | • | : | • | | | : | • | | Aroclors or Arochlor | • | • | • | • | • | • | • | Coke Oven Gas | • | • | • | • | • | • | • | Hexadecane | • | • | • | • | • | • | • | | Aromatic Hydrocarbons
Arsenic Acid | • | • | • | • | • | • | | Copper Chloride
Copper Sulfate | | • | • | | | : | | Hexamethylene Diisocyanate Hexamethylphosphoramide | • | : | • | • | : | : | | | Arseneous Acid
Asphalt | | • | | : | | : | | Corn Oil
Cotton Seed Oil 10 | | | | | • | : | | Hexane
Hexone | • | • | • | : | : | : | : | | Aviation Gasoline | • | • | • | • | • | • | • | Creosote | • | • | • | • | • | • | • | Hydraulic Oil, Mineral | • | • | • | • | • | • | • | | Barium Chloride
Barium Hydroxide | | • | • | : | • | • | | Cresols, Cresylic Acid
Crotonic Acid | | | | | | : | | Phosphate Esters Hydrazine | | : | • | | | : | | | Barium Sulfide
Baygon | | • | : | | | | | Crude Oil
Cumene | : | • | | | • | : | | Hydrobromic Acid
Hydrochloric Acid | : | : | • | : | • | : | : | | Beer | • | • | • | • | • | • | • | Cyclohexane | • | • | • | • | • | • | • | Hydrochloric Acid, dry | • | • | • | ۰ | | • | | | Benzaldehyde
Benzene, Benzol | • | • | : | : | • | : | | Cyclohexanol Cyclohexanone | • | • | • | • | • | • | • | Hydrochloric Acid 20%
Hydrocyanic Acid | • | • | • | • | • | • | | | Benezene Sulphonic Acid
Benzidine | | • | : | : | : | : | • | Diazomethane | : | • | | | : | : | | Hydrofluoric Acid, Anhydrous | • | • | • | : | : | : | | | Benzoic Acid | • | • | • | • | • | • | • | Dibenzofuran
Dibenzylether | : | | • | • | | • | | Hydroffuoric Acid, Less than 65% Above 70°C
Hydroffuoric Acid, 65% to Anhydrous, Above 70°C | 1.1 | • | • | | | | | | Benzonitrile
Benzoquinones | • | • | • | : | • | • | • | Dibromo chloropropane
Dibromoethane | : | • | • | | • | : | | Hydrafluoric Acid, Up to Anhydrous, 70°C & belov
Hydrafluorosillicic Acid | | • | • | • | • | : | | | Benzotrichloride
Benzoyl Chloride | • | • | • | : | • | : | • | Dibutyl Phthalate | : | • | | | : | : | | Hydrofluosilicic Acid | • | • | • | : | : | : | • | | Benzyl Alcohol | • | • | • | • | • | • | • | Dibutyl Sebacate
Dichlorobenzene | | • | • | • | • | • | • | Hydrogen
Hydrogen Bromide | • | • | • | • | • | • | • | | Benzyl Chloride
Bio-diesel (B100) | • | • | • | • | • | • | • | Dichlorobenzidene
Dichloroethane | • | • | • | | : | : | • | Hydrogen Fluoride
Hydrogen Peroxide, 10% | • | • | • | • | • | : | | | Biphenyl | • | • | • | • | • | • | • | Dichloroethylene | • | • | • | • | • | • | • | Hydrogen Peroxide, 10-90% | • | • | • | • | • | • | ١. | | Bis(2-chloroethyl)ether Bis(chloromethyl)ether | • | • | • | : | • | : | • | Dichloroethyl Ether Dichloromethane | : | • | • | | • | : | • | Hydrogen Sulfide, Dry or Wet
Hydroquinone | • | : | • | • | • | : | | | Bis(2-ethylhexyl)phthalate
Black Sulfate Liquor | • | • | : | : | : | : | | Dichloropropane | : | • | | | : | : | | Iodine Pentafluoride | • | • | • | • | • | • | ۰ | | Blast Furnace Gas | • | • | • | • | • | • | • | Dichloropropene
Dichlorvos | • | • | • | • | • | • | • | lodomethane
Isobutane | • | • | • | • | • | • | • | | Bleach (Sodium Hyprochlorite)
Boiler Feed Water | • | • | • | • | • | • | | Diesel Oil
Diethanolamine | : | • | • | | : | : | | Isooctane
Isophorone | • | : | • | : | • | : | | | Borax | • | • | : | : | : | : | • | Diethylaniline | • | • | • | • | • | • | • | Isopropyl Alcohol | • | • | • | • | • | • | • | | Boric Acid
Brine (Sodium Chloride) | • | • | • | • | • | • | • | Diethyl Carbonate
Diethyl Sulfate | : | • | • | | • | : | • | Jet Fuels
Kerosene | • | : | • | • | • | : | | | Bromine Bromine Trifluoride | • | • | • | • | • | • | | Dimethoxybenzidene Dimethylaminoazobenzene | : | • | | | : | : | | Lacquer Solvents
Lacquers | : | : | • | : | : | : | | | Bromoform | • | • | • | • | • | • | • | Dimethyl Aniline | • | • | • | • | • | • | • | Lactic Acid, 70°C and below | • | • | • | • | • | • | • | | Bromomethane
Butadiene | • | • | • | • | • | • | • | Dimethylbenzidine Dimethyl Carbamoyl Chloride | : | • | • | • | • | : | | Lactic Acid, Above 70°C
Lime Saltpeter (Calcium | • | : | • | : | • | : | | | Butane
Butanone | • | • | : | : | : | : | | Dimethyl Ether | | • | | | • | | • | Nitrates)Lindane | • | • | • | • | | | | | Butyl Acetate | • | • | • | • | • | • | • | Dimethylformamide
Dimethyl Phthalate | • | • | • | • | • | • | • | Linseed Oil
Liquified Petroleum Gas | • | • | • | • | • | • | • | | Butyl Alcohol, Butanol
Butyl Amine | • | • | • | : | • | • | • | Dimethyl Sulfate Dinitrophenol | : | • | • | | • | : | • | Lithium Bromide
Lithium, Elemental | • | • | • | • | • | • | | | tert-Butyl Amine | • | • | • | • | • | • | | Dinitrotoluene | • | • | • | • | • | • | • | Lubricating Oils, Refined | • | • | • | • | • | • | • | | Butyl Methacrylate | | • | | | | • | | Dioxane | • | • | • | • | • | • | | Lubricating Mineral or Petroleum Types | • | • | • | • | • | • | • | | Butyric Acid | • | • | | | | | | Diphenylhydrazine | • | • | • | • | • | • | • 1 | Sour | • | • | • | • | • | • | | | | SICHEM® S11- S90 | SICHEM® S50 | SICHEM® S33 - S91 | SICHEM® S58 - S60 | SICHEM® S59 - S93 | DIAPHRAGM | SICHEM® S66 | | SICHEM® S11- S90 | SICHEM® S50 | | SICHEM® S58 - S60 | SICHEM® S59 - S93 | DIAPHRAGM | SICHEM® S66 | | SICHEM® S11- S90 | SICHEM® S50 | SICHEM® S33 - S91 | SICHEM® S58 - S60 | SICHEM® S59 - S93 | DIAPHRAGM | SICHEM® S66 | |---|------------------|-------------|-------------------|-------------------|-------------------|-----------|-------------|--|------------------|-------------|------|-------------------|-------------------|-----------|-------------|---|------------------|-------------|-------------------|-------------------|-------------------|-----------|-------------| | | SICH | SICH | SICH | SICH | SICH | JIAP | SCH | | SICH | SICH | SICH | SICH | SICH | JIAP | 등 | | SICH | SICH | SICH | SICH | SICH | JIAP | SCH | | Magnesium Chloride | • | • | • | • | • | • | • | Phosphine | • | • | • | • | • | • | • | Sodium Hypochlorite | • | • | • | • | • | • | • | | Magnesium Hydroxide | • | • | • | • | • | • | • | Phosphoric Acid, Crude | • | • | • | • | • | • | • | Sodium Metaborate Peroxyhydrate | • | • | • | • | • | • | • | | Magnesium Sulfate
Maleic Acid | • | • | • | • | • | | | Phosphoric Acid, Pure, Less than 45% Phosphoric Acid, Pure, Above 45%, | • | • | • | | • | | | Sodium Metaphosphate
Sodium Nitrate | • | : | • | | • | | • | | Maleic Anhydride | • | • | • | • | • | • | • | Phosphoric Acid, Pure, Above 45%, Above 70°C | • | • | • | • | • | • | • | Sodium Perborate | • | • | • | • | • | • | • | | Mercuric Chloride | • | • | • | • | • | : | | Phosphorus, Elemental | • | • | • | | • | • | : | Sodium Peroxide | • | : | • | • | • | | • | | Mercury
Methane | • | • | | | | | | Phosphorus Pentachloride Phthalic Acid | | | | | | | | Sodium Phosphate, Monobasic
Sodium Phosphate, Dibasic | | | | | | | | | Methanol, Methyl Alcohol | • | • | • | • | • | • | • | Phthalic Anhydride | • | • | • | • | • | • | • | Sodium Phosphate, Tribasic | • | • | • | • | • | • | • | | Methoxychlor
Methylacrylic Acid | • | • | | • | • | : | • | Picric Acid, Molten Picric Acid, Water Solution | • | • | • | • | • | | | Sodium Silicate
Sodium Sulfate | • | • | • | • | • | | • | | Methyl Alcohol | • | • | • | • | • | • | • | Pinene | • | • | • | • | • | • | • | Sodium Sulfide | • | • | • | • | • | • | • | | Methylaziridine | • | • | | • | • | • | • | Piperidine | : | • | • | | • | • | | Sodium Superoxide | : | : | • | • | • | | • | | Methyl Bromide
Methyl Chloride | | | | • | | • | | Polyacrylonitrile Polychlorinated Biphenyls | | | | | | | | Sodium Thiosulfate
Soybean Oil | | | • | | | | | | Methyl Chloroform | • | • | • | • | • | • | • | Potash, Potassium Carbonate | • | • | • | • | • | • | • | Stannic Chloride | • | • | • | • | • | • | • | | 4,4-Methylene-Bis(2-chloroaniline) Methylene Chloride | : | • | | • | • | : | • | Potassium Acetate Potassium Bichromate | | | | | • | | | Steam, Saturated
Superheated | • | • | • | • | • | : | • | | Methylene Dianiline | • | • | • | • | • | • | • | Potassium Chromate, Red | • | • | • | • | • | • | • | Stearic Acid | • | • | • | • | • | • | • | | Methylene Diphenyldiisocyanate | • | • | | • | • | : | • | Potassium Oyanide | • | | | | • | | | Stoddard Solvent | • | • | • | • | • | • | • | | Methyl Ethyl Ketone (MEK)
Methyl Hydrazine | • | • | | • | | | | Potassium Dichromate Potassium, Elemental | • | | • | | • | | | Styrene
Styrene Oxide | • | | | • | • | | | | Methyl lodide | • | • | • | • | • | • | • | Potassium Hydroxide | • | • | • | • | • | • | • | Sugar | • | • | • | • | • | • | • | | Methyl Isobutyl Ketone (MIBK)
Methyl Isocyanate | • | • | | • | • | • | | Potassium Iodide Potassium Nitrate | • | • | • | • | • | • | • | Sulfur Chloride
Sulfur Dioxide | • | : | • | | • | | • | | Methyl Methacrylate | • | • | • | • | • | • | • | Potassium Permanganate | • | • | • | • | • | • | • | Sulfur, Molten | • | • | • | • | • | • | • | | Methyl Pyrrolidone | • | • | • | • | • | • | • | Potassium Sulfate | • | • | • | • | • | • | • | Sulfur Trioxide, Dry | • | • | • | • | • | • | • | | Methyl Tert. Butyl Ether (MTBE)
Milk | | | | • | • | | | Producer Gas Propane | • | | • | | • | | | Sulfur Trioxide, Wet
Sulfuric Acid, 10%, 70°C and below | | | • | | • | | | | Mineral Oils | • | • | • | • | • | • | • | Propane Sultone | • | • | • | • | • | • | • | Sulfuric Acid, 10%, Above 70°C | • | • | • | • | • | • | • | | Molten Alkali Metals | • | • | • | • | • | • | | Beta-Propiolactone | • | | • | • | • | | | Sulfuric Acid, 10-75%, 260°C and below | • | : | • | | • | | : | | Monomethylamine
Muriatic Acid | | | | | | | | Propionaldehyde
Propyl Alcohol | | | | | | | | Sulfuric Acid, 75-98%, 70°C and below
Sulfuric Acid, 75-98%, 70°C to 260°C | | | | | | | | | Naphtha | • | • | • | • | • | • | • | Propyl Nitrate | • | • | • | • | • | • | • | Sulfuric Acid, Sulfuric Acid, Furning | • | • | • | • | • | • | • | | Naphthalene
Naphthols | : | • | | • | • | : | • | Propylene
Propylene Dichloride | • | | | • | • | | | Sulfurous Acid
Tannic Acid | | : | • | • | • | | • | | Natural Gas | • | • | • | • | • | • | • | Propylene Glycol | • | • | • | • | • | • | • | Tartaric Acid | • | • | • | • | • | • | • | | Nickel Chloride | • | • | • | • | • | • | • | Propylene Oxide | • | • | • | • | • | • | • | TCDB-p-Dioxin | • | • | • | • | • | • | • | | Nickel Sulfate
Nitric Acid, Less than 30% | • | • | | • | • | : | | Propylenimine Prussic Acid, Hydrocyanic Acid | • | • | | | • | | • | Tertiary Butyl Amine Tetrabromoethane | • | : | • | • | • | | • | | Nitric Acid, Above 30% | • | • | • | • | • | • | • | Pyridine | • | • | • | • | • | • | • | Tetrachlorethane | • | • | • | • | • | • | • | | Nitric Acid, Crude
Nitric Acid, Red Fuming | • | • | • | • | • | : | • | Quinoline
Quinone | • | • | • | | • | | | Tetrachloroethylene
Tetrahydrofuran, THF | | : | • | • | • | | | | Nitrobenzene | • | • | • | • | • | • | • | Refrigerant type 10 | • | • | • | • | • | • | • | Thionyl Chloride | • | • | • | • | • | • | • | | Nitrobiphenyl | • | • | • | • | • | • | • | Refrigerant type 11 | • | • | • | • | • | • | • | Titanium Sulfate | • | • | • | • | • | • | • | | Nitro-Butanol
Nitrocalcite (Calcium Nitrate) | | | | • | • | | • | Refrigerant type 12 Refrigerant type 13 | : | • | • | | • | | | Titanium Tetrachloride
Toluene | | | | | • | | • | | Nitrogen | • | • | • | • | • | • | • | Refrigerant type 13B1 | • | • | • | • | • | • | • | Toluenediamine | • | • | • | • | • | • | • | | Nitrogen Tetroxide | • | : | • | • | • | : | • | Refrigerant type 21 | • | | • | | • | | | Toluenediisocyanate | : | : | • | • | • | | • | | Nitrohydrochloric Acid (Aqua Regia)
Nitromethane | | | | | | | | Refrigerant type 22
Refrigerant type 23 | | • | | | | | | Toluene Sulfonic Acid
Toluidine | | | | | | | • | | 2-Nitro-2-Methyl Propanol | • | • | • | • | • | • | • | Refrigerant type 31 | • | • | • | • | • | • | • | Toxaphine | • | • | • | • | • | • | • | | Nitromuriatic Acid (Aqua Regia)
Nitrophenol | • | | | • | | | • | Refrigerant type 32 Refrigerant type 112 | | | | | • | | | Transformer Mineral Oil Transmission Fluid A | | | | | | | | | Nitropriend
Nitropropane | • | • | • | • | • | • | • | Refrigerant type 113 | • | • | • | • | • | • | • | Trichloroacetic Acid | • | • | • | • | • | • | • | | Nitrosodimethylamine | • | • | • | • | • | • | • | Refrigerant type 114 | • | • | • | • | • | • | • | Trichlorobenzene | • | • | • | • | • | • | • | | Nitroso Methylurea
Nitrosomorpholine | : | • | | • | • | | • | Refrigerant type 114B2 Refrigerant type 115 | • | | | | • | | | Trichloroethane
Trichloroethylene | | | • | | | | | | Norge Niter (Calcium Nitrate) | • | • | • | • | • | • | • | Refrigerant type 123 | • | • | • | • | • | • | • | Trichlorophenol | • | • | • | • | • | • | • | | Norwegian Saltpeter (Calcium | • | • | | • | • | : | • | Refrigerant type124 Refrigerant type 125 | • | • | | | • | | | Tricresylphosphate | • | : | • | | • | | • | | Nitrate)
Octadecyl Alcohol | | | | | | | | Refrigerant type 125 | | | | | | | | Triethanolamine Triethyl Aluminum | | | | | | | | | Octane | • | • | • | • | • | • | • | Refrigerant type 141b | • | • | • | • | • | • | • | Triethylamine | • | • | • | • | • | • | • | | Oil, Petroleum
Oils, Animal and Vegetable | • | • | | • | • | : | | Refrigerant type 142b Refrigerant type 143a | • | • | | | • | | | Trifluralin
Trimethylpentane | • | | • | • | • | | • | | Oleic Acid | • | • | • | • | • | • | • | Refrigerant type 152a | • | • | • | • | • | • | • | Turpentine | • | • | • | • | • | • | • | | Oleum
Orthodichlorobenzene | • | • | • | • | • | • | | Refrigerant type 218 | • | • | • | • | • | • | | Urea, 70°C and below | • | • | • | • | • | : | | | Ortnodicniorobenzene
Oxalic Acid | | • | | • | | | | Refrigerant type 290 (Propane) Refrigerant type 500 | | | | | | | | Urea, above 70°F
Vamish | | | | | | | | | Oxygen, Gas (BAM Approval) | • | • | • | • | • | ۰ | • | Refrigerant type 502 | • | • | • | • | • | • | • | Vegetable Oil | • | • | • | • | • | • | • | | Ozone
Oil, Petroleum | • | • | • | • | • | • | • | Refrigerant type 503 Refrigerant type 507 | • | | | | | | | Vinegar
Vinyl Acetate | • | : | • | • | • | : | • | | Oils, Animal and Vegetable | • | • | • | • | • | | | Refrigerant type 717 (Ammonia) | • | • | • | | • | • | | Vinyl Bromide | | | | | • | | | | Oleic Acid | • | • | • | • | • | • | • | Refrigerant type 744 (Carbon Dioxide) | • | • | • | • | • | • | • | Vinyl Chloride | • | • | • | • | • | • | • | | Oleum
Orthodichlorobenzene | • | • | | • | • | | | Refrigerant type C316 Refrigerant type C318 | : | • | | | : | • | | Vinylidene Chloride
Vinyl Methacrylate | : | : | • | | • | | • | | Oxalic Acid | • | • | • | • | • | • | • | Refrigerant type HP62 | • | • | • | • | • | • | • | Water, Acid Mine, with Oxidizing Salt | • | • | • | • | • | • | • | | Oxygen, Gas (BAM Approval) | : | : | • | • | • | : | | Refrigerant type HP80 | : | : | : | | : | • | | Water, Acid Mine, No Oxidizing Salts | : | : | • | • | • | : | : | | Ozone
Palmitic Acid | • | • | | • | | | | Refrigerant type HP81
Salt Water | | • | | | • | | | Water, Distilled
Return Condensate | | | | | | | | | Paraffin | • | • | • | • | • | • | • | Saltpeter, Potassium Nitrate | • | • | • | • | • | • | • | Seawater | • | • | • | • | • | • | • | | Parathion
Parawlene | • | • | | • | • | : | | Sewage
Silicon Oil | • | • | • | • | • | • | | Tap Water
Whiskey and Wines | • | : | • | | • | : | • | | Paraxylene
Pentachloronitrobenzene | : | • | | • | | | • | Silver Nitrate | • | • | • | • | • | • | • | Wood Alcohol | | | | | | | | | Pentachlorophenol | • | • | • | • | • | • | • | Soda Ash, Sodium Carbonate | • | • | • | • | • | • | • | Xylene | • | • | • | • | • | • | • | | Pentane
Perchloric Acid | • | • | | • | • | : | | Sodium Bicarbonate, Baking Soda
Sodium Bisulfate (Dry) | • | • | | • | • | | | Zinc Chloride
Zinc Sulfate | • | | • | • | • | | • | | Perchloroethylene | • | • | • | • | • | • | • | Sodium Bisulfite | • | • | • | • | • | • | • | 2.10 Salidio | <u> </u> | | | | | | | | Petroleum Oils, Crude | • | • | • | • | • | : | | Sodium Chlorate | • | • | • | • | • | • | | SUITABLE | | | | | | | | | Petroleum Oils, Refined
Phenol | • | • | | • | • | | | Sodium Chloride
Sodium Cyanide | • | • | • | | : | | | DEPENDS ON OPERATING CONDIT | ΓΙΟΝ | S | | | | | | | Phenylenediamine | • | • | • | • | • | • | • | Sodium, Elemental | • | • | • | • | • | • | • | UNSUITABLE | | | | | | | | | Phosgene | • | • | • | • | • | • | | Sodium Hydrogen Sulphite | | | | | | | | | | | | | | | | Via Consolare, 41/43 25030 Zocco di Erbusco - (BS) ITALY Tel. +39 030 7386033 - Fax +39 030 7386035 w w w . f m i - s p a . c o m